Central Activating Transcription Factor 4 (ATF4) Regulates Hepatic Insulin Resistance in Mice via S6K1 Signaling and the Vagus Nerve

نویسندگان

  • Qian Zhang
  • Junjie Yu
  • Bin Liu
  • Ziquan Lv
  • Tingting Xia
  • Fei Xiao
  • Shanghai Chen
  • Feifan Guo
چکیده

Recent studies have revealed that the central nervous system, particularly the hypothalamus, is critical for regulating insulin sensitivity in peripheral tissues. The aim of our current study is to investigate the possible involvement of hypothalamic activating transcription factor 4 (ATF4) in the regulation of insulin sensitivity in the liver. Here, we show that overexpression of ATF4 in the hypothalamus resulting from intracerebroventricular injection of adenovirus expressing ATF4 induces hepatic insulin resistance in mice and that inhibition of hypothalamic ATF4 by intracerebroventricular adenovirus expressing a dominant-negative ATF4 variant has the opposite effect. We also show that hypothalamic ATF4-induced insulin resistance is significantly blocked by selective hepatic vagotomy or by inhibiting activity of the mammalian target of rapamycin (mTOR) downstream target S6K1. Finally, we show that inhibition of hypothalamic ATF4 reverses hepatic insulin resistance induced by acute brain endoplasmic reticulum (ER) stress. Taken together, our study describes a novel central pathway regulating hepatic insulin sensitivity that is mediated by hypothalamic ATF4/mTOR/S6K1 signaling and the vagus nerve and demonstrates an important role for hypothalamic ATF4 in brain ER stress-induced hepatic insulin resistance. These results may lead to the identification of novel therapeutic targets for treating insulin resistance and associated metabolic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endoplasmic Reticulum Stress Promotes LIPIN2-Dependent Hepatic Insulin Resistance

OBJECTIVE Diet-induced obesity (DIO) is linked to peripheral insulin resistance-a major predicament in type 2 diabetes. This study aims to identify the molecular mechanism by which DIO-triggered endoplasmic reticulum (ER) stress promotes hepatic insulin resistance in mouse models. RESEARCH DESIGN AND METHODS C57BL/6 mice and primary hepatocytes were used to evaluate the role of LIPIN2 in ER s...

متن کامل

MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4.

Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in th...

متن کامل

The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts.

The recent demonstration that osteoblasts have a role in controlling energy metabolism suggests that they express cell-specific regulatory genes involved in this process. Activating transcription factor 4 (ATF4) is a transcription factor that accumulates predominantly in osteoblasts, where it regulates virtually all functions linked to the maintenance of bone mass. Since Atf4-/- mice have small...

متن کامل

Leucine Deprivation Increases Hepatic Insulin Sensitivity via GCN2/mTOR/S6K1 and AMPK Pathways

OBJECTIVE We have previously shown that serum insulin levels decrease threefold and blood glucose levels remain normal in mice fed a leucine-deficient diet, suggesting increased insulin sensitivity. The goal of the current study is to investigate this possibility and elucidate the underlying cellular mechanisms. RESEARCH DESIGN AND METHODS Changes in metabolic parameters and expression of gen...

متن کامل

Endoplasmic reticulum stress induced by tunicamycin increases resistin messenger ribonucleic acid through the pancreatic endoplasmic reticulum eukaryotic initiation factor 2α kinase–activating transcription factor 4–CAAT/enhancer binding protein‐α homologous protein pathway in THP‐1 human monocytes

AIMS/INTRODUCTION Resistin, secreted from adipocytes, causes insulin resistance in mice. In humans, the resistin gene is mainly expressed in monocytes and macrophages. Tunicamycin is known to induce endoplasmic reticulum (ER) stress, and reduce resistin gene expression in 3T3-L1 mouse adipocytes. The aim of the present study was to examine whether ER stress affects resistin gene expression in h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013